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Chapter 1

Introduction

In this manual we provide some examples of problems which can be set up and solved
using the FEAP program. We begin by describing some of the methods which may be
used to define an input data file for some simple finite element analyses. The manual
is organized to start with very basic methods for inputs and procedes to more general
methods to describe input data and problem solutions.

FEAP is controlled using a set of commands. Each command performs a basic step in
either describing a problem or solving a problem. Commands are divided into three
basic groups:

1. Mesh description commands;

2. Problem solution commands; and

3. Graphical display commands.

The appendices of the User Manual contain the optional forms which each input com-
mand may have.

It is suggested that new users of FEAP carefully read this manual in its entirity before
starting to generate their own input datas. The later examples provide ways to manage
the data for problems in separate files using an include option. Also, the form of the
data input records may be constructed using parameters to which numerical values
may be assigned either in numeric or expression form (see also Chapter 4 of the User
Manual).
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Chapter 2

Example 1. Patch Test.

The first problem considered is a simple patch test in which all the data is specified ex-
plicitly. Later examples will illustrate how FEAP can add missing data or use repeating
similar parts to generate a mesh.

The patch test is a simple test which should be performed when first using any finite
element program (see Chapter 11, Zienkiewicz and Taylor, 4th ed. Vol 1, for description
of patch test). The patch test both ensures that the theory for the finite element
formulation has been correctly implemented and that installation of the analysis system
is also correct. For a problem in linear elasticity one patch test is uniform stress in the
x direction. This condition may be imposed on a square region divided into 4-elements
and loaded by a constant x-traction on the right side as shown in Figure 2.1 (node 6
is located at y = 5 units). For a square with side lengths 10 and a 10 unit per length
traction, the nodal forces on the boundary are 2.5 at the corners and 5.0 at the midside.
The left side of the mesh is restrained so that no x-direction displacements occur and
the lower left corner is also restrained in the y-direction. These restraints prevent rigid
body motions as well as ensure that a correct solution to the constant stress problem
may be obtained.

For a linear elastic problem with the isotropic properties: Young’s modulus 1000 and
Poisson ratio 0.25, the plane strain solution has displacements

u = 0.009375 x ; v = − 0.003125 y

and stresses
σxx = 1.0 ; σyy = 0.0 ; σxy = 0.0 ; σzz = 0.25

The input data for each problem to be solved by FEAP is prepared and placed in
a file on disk. It is recommended that the filename for the input data have a first
character of I. The filename should not exceed 14 characters (12 in PC mode, of which
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CHAPTER 2. EXAMPLE 1. PATCH TEST 3
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Figure 2.1: Patch Test Mesh

the last 4 may be used for an extender .xxx). When using the program on a PC it is
recommended that no extender be used for the main data input file. Feap uses this file
for generating other files which do contain extenders and, thus, an error could occur.

The filename for the input data of the patch test will be called Ipatch for the discussion
below. When FEAP is run the names for other files will be assigned by replacing the
first character (i.e., the I) by one indicating the type of file. For example, the file
containing the description of the mesh and solution results is called the output file
and for the above choice for the name of the input data file will be named Opatch.
The complete input data file for the patch test problem is shown in Table 2.1 and a
description for each part of this data follows.

Input records for FEAP are free format. Each data item is separated by a comma
and/or blank characters. If blank characters are used without commas, each data item
must be included. That is multiple blank fields are not considered to be a zero. Each
data item is restricted to 14 characters (15 including the blank or comma). Comments
may be appended to any data record after the character ! (e.g., see Table 2.1).

The input file Ipatch consists of several data sets. For the patch test mesh given in
Table 2.1 the data sets are given by the commands (shown without indentation in the
table):

FEAP * * 4-Element Patch Test
MATErial
COORdinates
ELEMents
BOUNdary restraints
FORCes
END
BATCh
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FEAP * * 4-Element Patch Test
9,4,1,2,2,4

MATErial,1
SOLId

PLANe STRAin
ELAStic ISOTropic 1000.0 0.25

! Blank termination record
COORdinates

1 0 0.0 0.0
2 0 4.0 0.0
3 0 10.0 0.0
4 0 0.0 4.5
5 0 5.5 5.5
6 0 10.0 5.0
7 0 0.0 10.0
8 0 4.2 10.0
9 0 10.0 10.0

! Blank termination record
ELEMents

1 1 1 1 2 5 4
2 1 1 2 3 6 5
3 1 1 4 5 8 7
4 1 1 5 6 9 8

! Blank termination record
BOUNdary restraints

1 0 1 1
4 0 1 0
7 0 1 0

! Blank termination record
FORCes

3 0 2.5 0.0
6 0 5.0 0.0
9 0 2.5 0.0

! Blank termination record
END

Table 2.1: Data for Patch Test

BATCh
FORM residual
TANGent
SOLVe
DISPlacement ALL
STREss ALL

END
STOP

Table 2.2: Data for Patch Test
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END
STOP

FEAP interprets only the first four characters of each command. These are shown
as upper case letters to indicate the minimum amount which may be used to identify
each command. Either upper case or lower case letters may be used to identify each
command. Thus, MATE or mate may be used to identify the material property
data sets. After a FEAP command and the control record, the commands before the
first END may be in any order and define the mesh for the problem. The commands
after the BATCH describe the solution algorithm for the problem and terminate with
the second END command. Finally, the STOP command informs FEAP that no
more data exists. Only one problem may appear in the file which contains the problem
initiation command FEAP. See Example 4 in Chapter 6 for a way to run multiple
problems.

The control record defines the size of finite element problem to be solved. The first field
defines the number of nodes (NUMNP), the next field is the number of elements (NUMEL),
followed by the number of material sets (NUMMAT), the spatial dimension for the mesh
(NDM), the number of degrees of freedom for each node (NDF), and the maximum number
of nodes on any element (NEN). The patch test has a mesh with 9 nodes, 4 elements,
and 1 material set. The problem is 2 dimensional, has 2 degrees of freedom at each
node, and each element has 4 nodes.

The first data set is identified by the MATErial command. This record also must
contain a material set number (ranging from 1 to the maximum number of sets needed).
The next records consist of commands which describe the type of element (see Chapter
6 of the User Manual for the types of elements included with FEAP) and the material
parameters associated with the set. The data shown in Table 2.1 indicates a SOLId
(continuum) element is used, the problem is plain strain and the material parameters
are associated with a linear elastic isotropic material. Except for the element type
record, other data may be in any order and terminates with a blank record (comments
are permitted on records and begin with the exclamation point, ”!”).

The values of the nodal coordinates for the patch are specified using the COORdinate
command. Each record defines a node number, a generation parameter, and the x and
y coordinate values. Nodes may be in any order, but are shown in increasing order in
Table 2.1. Input terminates with a blank record.

The manner in which nodes are connected to form individual finite elements and their
association to the type of element and material parameters is described by the data
following the ELEMent command. Each record defines the element number (which
must be in increasing numerical order), a generation parameter (to be described later),
the material data set associated with the element, and the list of nodes connected to
the element. For the elements shown in Figure 2.1 the node sequence must start with
a node at one vertex and then proceed with the nodes on vertices traversed counter
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clockwise around the element. Input terminates with a blank record.

The degree of freedoms for each node may have known applied loads (nodal forces)
or may be restrained to satisfy specified nodal displacements. In FEAP all degree
of freedoms are assumed to have specified loading applied unless a restraint code is
set. The BOUNdary restraint command may be used to assign restraints to degree
of freedoms which are to have specified displacements. Each record defines a node
number, a generation parameter, and the restraint codes for each degree of freedom
associated with the node. A non-zero value for the restraint code indicates that the
associated degree of freedom must satisfy a specified nodal displacement value (default
is zero); whereas, a zero restraint code indicates the associated degree of freedom has a
specified nodal force (also zero by default). Thus, for the data shown in Table 2.1, node
1 has both the u and v displacements restrained; nodes 4 and 7 have the u displacement
restrained and the y force specified. All other nodes have both the x and the y forces
specified since no restraints are specified. Input terminates with a blank record.

It is evident from the remaining data that no data is provided to impose non-zero
displacements (methods to input non-zero values are described in Section 5.7 of the
User Manual); however, data is given to impose non-zero forces using the FORCe
command. Each force record defines a node number, a generation parameter, and the
force values for each degree of freedom associated with the node. Thus, for the data
given in Table 2.1, nodes 3 and 9 have x force values of 2.5 units and node 6 has an x
force value of 5.0 units. Input terminates with a blank record.

The final command after the force values is the END command which terminates input
of the data describing the finite element mesh.

The set of commands shown in Table 2.2 define the solution algorithm to be used in solv-
ing the problem. The execution is initiated by the BATCh command (alternatively,
it is possible to perform an interactive execution where users enter each command as
needed, see next example and Chapter 11 of the User Manual). The FORM command
instructs FEAP to form the residual for the equilibrium equations written as:

R(u) = F − P(u)

where F is the vector of applied nodal forces, u is the vector of nodal displacements,
and for a static linear elastic problem P is defined as

P = Ku

in which K is the stiffness matrix. A solution to the problem is defined by requiring the
residual to be zero. In FEAP the solution may be computed using Newton’s method
which solves a sequence of linear problems. Thus, the TANGent command requests
the tangent matrix to the residual about the current solution state, u (at start of
execution the value is zero) where the tangent matrix is defined as:

Ktang = − ∂R

∂u
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Thus, for a linear elastic static problem the tangent matrix is just K. The SOLVe
command instructs FEAP to solve the incremental (Newton) equations

Ktang ∆u = R

and to update the solution as
u ← u + ∆u

For a linear problem this solution sequence should converge in one iteration; thus, the
residual would be zero if the command FORM is given again.

At this point FEAP has computed the solution; however, it is necessary to issue
additional commands to output the values for each type of solution quantity. The
DISPlacement command instructs FEAP to output values for the nodal generalized
displacement parameters associated with each nodal degree of freedom (for linear elas-
ticity using solid elements these are the values of the u and v displacements at a node).
The option ALL requests the displacement values for all active nodes (see manual
pages in Appendix A for other options). Similarly, the command STREss, ALL re-
quests output values for stresses within all the active elements (see Appendix A for
other options). All output is placed in the output file.



Chapter 3

Example 2. Axisymmetric patch
test

A three dimensional solid is described by a body of revolution and is to be analyzed
for the case of axisymmetric behavior. Only small deformations are considered.

For this case the displacement field is given by:

u =

{
ur(r, z)
uz(r, z)

}
(3.1)

That is, the displacements do not depend on the θ coordinate; however, in FEAP all
axisymmetric problems are formulated for a one radian sector in the θ direction and the
factor 2 π is omitted. The stress and strain for an axisymmetric case may be ordered
as:

σ =
[
σrr σzz σθθ σrz

]T
(3.2)

and
ε =

[
εrr εzz εθθ γrz

]T
(3.3)

where γij = 2 εij. Using the displacements given by Eq. 3.1 the strain-displacement
relations are given by (Reference: I.S. Sokolnikoff, Mathematical Theory of Elasticity,
McGraw-Hill, New York, 1956, pp 182-184.)

ε =

[
∂ur

∂r
,

∂uz

∂z
,

ur

r
,

∂ur

∂z
+

∂uz

∂r

]T

(3.4)

Similarly, for the above displacement field the equations of equilibrium are given by:

∂σrr

∂r
+

∂σrz

∂z
+

σrr − σθθ

r
+ br = 0

∂σrz

∂r
+

σrz

r
+

∂σzz

∂z
+ bz = 0 (3.5)

8
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in which body forces also are axisymmetric and thus are given by b = b(r, z).

For a displacement formulation, a variational problem for linear elasticity may be
written as

Π(u) =

[ ∫
Ω

W (ε) r dr dz −
∫

Ω

uT b r dr dz −
∫

Γt

uT t̄ r ds

]
= min. (3.6)

where W is the stored energy function and ds is a differential length on the two di-
mensional r − z boundary. Note also that the factor 2 π is again not included for
implementation into FEAP.

Introducing an isoparametric interpolation for the finite element model as

r = Nα(ξ) rα

z = Nα(ξ) zα

ur = Nα(ξ) uα
r

uz = Nα(ξ) uα
z

where ξ are natural coordinates, the strain-displacement relations become

ε =



∂Nα

∂r
0

0
∂Nα

∂z
Nα

r
0

∂Nα

∂z

∂Nα

∂r




uα

r

uα
z

uα
θ



The variational problem generates the residual equation (again without the factor 2 π)

Rα = Fα −
∫

Ω

BT
ασ r dr dz

in which nodal forces are given by

Fα =

[ ∫
Ω

Nαb r dr dz +

∫
Γt

Nαt̄ r ds

]
Linearizing generates the tangent stiffness used in solution of problems by a Newton
method. Accordingly, after the linearization step we obtain

Kαβ =

∫
Ω

BT
αDT Bβ r dr dz

as the stiffness matrix in which DT is the matrix of tangent moduli for each material.



CHAPTER 3. EXAMPLE 2. AXISYMMETRIC PATCH TEST 10

1 2

3 4

1 2 3

4 5 6

7 8 9

Figure 3.1: (a) 4-node element (b) 9-node element.

The patch test satisfaction requires two parts: A stability test and a consistency test.
Here the stability is assessed by computing the eigenvalues for a single element.

An eigenpair assessment is performed for the 4-node element shown in Fig. 1(a). The
command language statements needed are:

BATCh

TANG,,-1 ! No factoring performed

EIGE ! Eigenpair for last element

END

and results obtained are:

Eigenvalue

1 2 3 4

1.5094E+04 6.2967E+03 5.9726E+03 4.1488E+03

4.1332E+03 8.7238E+02 1.6841E+02 -4.8317E-13

Eigenvectors

1 2 3 4

2.8467E-01 -1.4779E-01 3.6123E-01 5.7917E-01

2.7360E-01 -3.0785E-01 -3.1771E-01 1.5711E-01

-4.2180E-01 -5.3722E-01 -3.4016E-01 -3.3940E-01

4.0766E-01 3.0785E-01 -3.9098E-01 -1.5711E-01

-4.2180E-01 5.3722E-01 -3.4016E-01 3.3940E-01

-4.0766E-01 3.0785E-01 3.9098E-01 -1.5711E-01

2.8467E-01 1.4779E-01 3.6123E-01 -5.7917E-01

-2.7360E-01 -3.0785E-01 3.1771E-01 1.5711E-01

Eigenvectors
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5 6 7 8

2.2696E-02 -5.3662E-01 3.7778E-01 7.8404E-15

-5.6183E-01 -9.2489E-02 -3.6131E-01 5.0000E-01

6.1055E-02 -4.5016E-01 3.1016E-01 6.4563E-15

4.2439E-01 -2.8981E-02 3.6131E-01 5.0000E-01

6.1055E-02 -4.5016E-01 -3.1016E-01 -5.9879E-15

-4.2439E-01 2.8981E-02 3.6131E-01 5.0000E-01

2.2696E-02 -5.3662E-01 -3.7778E-01 -7.1650E-15

5.6183E-01 9.2489E-02 -3.6131E-01 5.0000E-01

The test is repeated for the mesh shown in Fig. 1(b) and the resulting eigenvalues are
(vectors are not included here)

Eigenvalue

1 2 3 4

5.1049E+04 4.9787E+04 2.3214E+04 2.0397E+04

1.2530E+04 1.2488E+04 8.1176E+03 7.0663E+03

6.2949E+03 5.8856E+03 4.3601E+03 3.1329E+03

2.3443E+03 2.1822E+03 1.3440E+03 3.6688E+02

9.5560E+01 -6.3612E-12

In both cases there are two rigid body modes : a z-translation and a free rotation in the
θ-direction. That is displacements which cause no strain are restricted to

uz = A and uθ = B r

where A and B are constants.

For a part of the consistency test we now consider the test applied to a displacement
field expressed as:

ur = A + B r and uz = 0

we obtain strains

ε =



B

0

A

r
+ B

0


and for an isotropic material with constitution

σij = λ εv δij + 2 µ εij
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where εv = εij is the volume change in small deformation, the stresses

σ =



λ

(
A

r
+ 2 B

)
+ 2 µ B

λ

(
A

r
+ 2 B

)
λ

(
A

r
+ 2 B

)
+ 2 µ

(
A

r
+ B

)
0


Inserting these stresses into the equilibrium equation requires a non-zero radial body
force to be:

br = (λ + 2 µ)
A

r2

This body force distribution must be coded into each element to permit the testing of
a patch performance.

1 2 3

4
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7 8 9
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7 8 9
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17 18 19
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21 22 23 24 25

Figure 3.2: (a) 4-node mesh (b) 9-node mesh.

A rectangular region between 5 ≤ r ≤ 10 and 0 ≤ z ≤ 5 is used (Note that it is
important not to use a patch which includes a zero radius as no radial displacement
is allowed there). The meshes shown in Fig. 2 are use for the patch tests and results
for the 9-node mesh are shown in Fig. 3 (results for a4-node element are very similar).
Based on the above assessment we find that the element, as coded, passes all the patch
test requirements for stability and consistency.
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 6.71E+00

 7.43E+00

 8.14E+00

 8.86E+00

 9.57E+00

 1.03E+01

 6.00E+00

 1.10E+01

 DISPLACEMENT 1  

Current View
Min =  6.00E+00
X = 5.00E+00
Y = 0.00E+00

Max =  1.10E+01
X = 1.00E+01
Y = 0.00E+00

               Time = 0.00E+00

Figure 3.3: 9-node radial displacement contour.



Chapter 4

Example 2. Truss Problem.

As a next example for the use of FEAP, consider a simple truss problem. The mesh,
nodal and element numbers, loading, restraints, and material properties are shown in
Figure 4.1.

1 2 3

4 5

1 2

3 4 5 6

7

Figure 4.1: Mesh for Truss Example

The complete data file for the problem is shown in Table 4.1 and a description for each
part of this data follows.

The control record indicates the mesh has 5 nodes, 7 elements, 2 material sets. It is
a 2 dimensional problem with 2 degrees of freedom at each node and 2 nodes for each
truss element.

The MATEeral property sets for all members are identical except for the cross sectional
area of the members (the first numerical field on the CROSs SECTion record). Two
types are indicated: Set 1 has an area of 10 units while set 2 has an area of 5 units.

The coordinates are input as for the patch example described above. Element properties

14
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FEAP * * 2-D Truss Problem
5 7 2 2 2 2

MATErial,1
TRUSS

ELAStic ISOTropic 1000.0
CROSs SECTion 10.0

! Blank termination record
MATErial,2

TRUSS
ELAStic ISOTropic 1000.0
CROSs SECTion 5.0

! Blank termination record
COORdinates

1 0 0.0 0.0
2 0 200.0 0.0
3 0 400.0 0.0
4 0 100.0 160.0
5 0 300.0 160.0

! Blank termination record
ELEMents

1 0 1 1 2
2 0 1 2 3
3 0 1 1 4
4 0 2 2 4
5 0 2 2 5
6 0 1 3 5
7 0 1 4 5

! Blank termination record
BOUNdary restraints

1 0 1 1
3 0 0 1

! Blank termination record
FORCe

5 0 0.0 -10.0
! Blank termination record

END
INTEractive
STOP

Table 4.1: Data for Truss Analysis Problem
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are also input in a similar way; however, note that the material property set in the
third field now is set to either 1 or 2 depending on whether the cross section has 5 or 10
units of area. Boundary restraint conditions are imposed so that node 1 is restrained
to have zero u and v displacements while node 3 has only a restrained v displacement.
Finally, a single load in the vertical direction with magnitude -10.0 is applied to node
5.

This problem requests an INTEractive mode of solution. In the interactive mode users
must give the solution commands needed for each solution step. For example, when
the command FORM is given FEAP will compute the residual and then prompt for
another command input. Similarly, giving the commands for output will display the
request on the screen and also place the information in the output file.



Chapter 5

Example 3. Circular Disk
Subjected to Point Loading.

The next problem considered is a circular disk loaded by two concentrated forces of
10 units each directed along a diagonal (see Figure 5.1). The material of the disk is
assumed to be linearly elastic. Furthermore, for simplicity we consider the loads to be
slowly applied so that inertial effects may be ignored. Thus, the model to be solved is
a simple linear elastostatics problem. Since the loading is symmetric and we assume
the material to be isotropic (and thus also symmetric), it is only necessary to construct
a mesh for one quadrant of the circular disk.

This problem has curved boundaries and requires a general mesh to define the finite
element solution, thus, more details are described for the input data options available
in FEAP.

Figure 5.1: Circular Disk with Point Loading

In the two dimensional capabilities included in FEAP, the solid elements permit an
analyst to use elements with between 3 and 9 attached nodes. A 3-node element is a
plane triangle with nodes located at each vertex. A 4-node element is a quadrilateral

17
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with nodes at each vertex. A 9-node element is quadrilateral in shape but may have
curved sides defined by nodes located in the mid part of each edge, as well as one
additional node in the interior. Omitting some midside nodes and/or the center node
produces quadrilateral elements with between 5 and 8 nodes.

Let us assume that a mesh will be constructed using 4-node quadrilateral elements.
The nodes are defined by a sequence starting with Node 1 and concluding with the
maximum number Node NUMNP. The elements also are defined by a sequence starting
with Element 1 and concluding with Element NUMEL. A 4-node quadrilateral element
is defined by the node numbers associated with each vertex. A simple mesh for one
quadrant of the disk is shown in Figure 4.1. The figure shows the numbers associated
with each node and element. This mesh has 19 nodes (NUMNP = 19) and 12 elements
(NUMEL = 12).

1 2 3 4 5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

1 2 3

4

5
6

7

8

9

10

11

12

Figure 5.2: Finite Element Mesh for Circular Disk with Point Loading

The control data for the mesh shown in Figure 5.2 is:

FEAP * * Example 1. Circular Disk: Basic inputs
19 12 1 2 2 4

The remainder of the finite element mesh is described using the data set concepts
introduced in the previous examples.

There are options to specify the number and coordinates for each nodal point. The one
used to this point is the COORdinate option. Since only the first 4 characters of each
command are interpreted by FEAP, the use of COOR or COORDINATE produces
identical results. After the COOR command individual records defining each nodal
point and its coordinates (in the present case the x1 and x2 coordinates) are specified
as:
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N, NG, X-1, X-2

where
N Number of nodal point.
NG Generation increment to next node.
X-1 value of x-1 coordinate.
X-2 value of x-2 coordinate.

Thus, for the mesh shown in Figure 4.1, the coordinate data may be specified as:

COORdinates
1 1 0.0000 0.0000
5 0 1.0000 0.0000
6 1 0.0000 0.2500
8 1 0.4500 0.2000

10 0 0.9239 0.3827
11 1 0.0000 0.5000
13 1 0.4000 0.4000
15 0 0.7010 0.7010
16 0 0.0000 0.7500
17 0 0.2913 0.6869
18 0 0.3827 0.9239
19 0 0.0000 1.0000

! Blank termination record

The missing node numbers and their coordinate values are generated using linear in-
terpolation on the NG generation sequence given. Thus, the first pair of records also
generates nodes 2 to 4 with coordinates:

2 0.2500 0.0000
3 0.5000 0.0000
4 0.7500 0.0000

Comments may be appended after the second character of any line by using an excla-
mation followed by the text. Other options to define coordinates are discussed later.

There are also different options which may be used to generate the element connection
data. One is the ELEMent command which is given as:

N, NG, MA, N-1, N-2, N-3, N-4
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where
N Number of element.
NG Generation increment for node numbers.
MA Material identifier associated with element.
N-1 Node number for first vertex.
N-2 Node number for second vertex.
N-3 Node number for third vertex.
N-4 Node number for fourth vertex.

Any vertex of the quadrilateral may be used to define N-1. The remainder, however,
should be specified using a counter clockwise sequencing around the nodes as shown in
Figure 5.3.

1

2

1

2

3

4

Figure 5.3: Node Sequencing for 4-node Quadrilateral

The element connection data for the example problem is given by:

ELEMents
1 1 1 1 2 7 6
5 1 1 6 7 12 11
9 1 1 11 12 17 16

10 1 1 12 13 14 17
11 1 1 14 15 18 17
12 0 1 16 17 18 19

! Blank termination record

Elements within a data set must be in order; however, gaps may occur and missing
elements will be generated. The second field in each of the element records defines the
increment to apply to nodes in order to generate missing elements. Thus, from the first
two pairs of records it is evident that elements 2, 3, and 4 are missing. The generation
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increment to apply to the nodes on element 2 is specified as 1 on the element 1 record1.
Accordingly, the generated elements will have the following sequence of nodes.

2 2 3 8 7
3 3 4 9 8
4 4 5 10 9

The material identifier number will be the values specified in the third field and for the
data above will be 1 for all generated elements (the material identifier for generated
elements is taken from the first record of each generation pair).

Multiple ELEMent sets may be used or ELEMent may be combined with other
options (e.g., BLOCk type generations).

To complete the problem specification it is necessary to impose constraints on the
nodal displacements along the symmetry axes, specify the applied concentrated load,
and define the material set properties. A set of commands which accomplish this is
given by

BOUNdary restraint codes
1 1 1 -1
5 0 0 1
6 5 -1 0

19 0 1 0
! Blank termination record

FORCes on nodes
19 0 0 -5.0

! Blank termination record

MATErial,1
SOLId
ELAStic ISOTropic 10000 0.25 ! E and nu
DENSity data 0.1 ! rho
QUADrature data 2 2

! Blank termination record
END

The set of records following the BOUNdary code command imposes the necessary
restraints on nodes. A non zero restraint code implies the value of the corresponding
displacement component will have specified values (default values are 0.0); whereas, a
zero code (the default restraint code value) indicates the component is unknown and
must be computed. The inputs use generation, similar to the COOR data. Thus the

1If the field is omitted a default value of 1 is assumed.
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first pair of records will also generate restraints for nodes 2, 3, and 4. A negative or
zero code will propagate to the generated node, whereas a positive code will become a
zero values on the generated nodes. Thus the first pair will generate a set of restraints
such that the first displacement component (u1) will be an unknown and the second
component (u2) will be set to a specified value. The last pair of records also generates
restraints for the first degree of freedom of nodes 11 and 16.

For degree of freedoms with zero restraint codes FEAP will add a force value to each
node (default is 0.0); whereas, for non zero restraint codes FEAP will impose a displace-
ment value (default is 0.0). Non zero forces may be specified using a FORCe command
(other options also exist as described later). Non zero displacements may be specified
using a DISPlacement command (again, other options exist). Thus, for the example
problem a concentrated load (F2 = −5) is applied on node 19 by the FORCe command
set shown above. The MATErial record specifies the set number as 1. The next record
requests the SOLId element type (See Chapters 6 and 7 of the User Manual for ad-
ditional information on types of elements and material models permitted). The third
record defines the material constitution as isotropic linear elastic and sets the parame-
ters as E = 1000, ν = 0.25. The fourth record sets the material density as ρ = 0.1. The
fifth record specifies a 2× 2 Gauss quadrature to compute arrays and output element
results. The input of material parameters terminates with a blank record. The data
following the SOLId specification may be in any order. Also any data not needed may
be omitted. Since the disk analysis is quasistatic the material density is unnecessary
and could be omitted. Also default quadrature values will be used if this record is
omitted. For the current analysis the minimum material data is:

MATErial,1
SOLId
ELAStic ISOTropic 10000 0.25 ! E and nu

! Blank termination record

The END command signals FEAP that the specification of the mesh and initial loading
conditions is complete. An mesh may be modified during the solution phase by re-
entering MESH generation or by manipulating the mesh to merge parts using the TIE

command or setting boundary conditions to satisfy LINK or ELINk conditions.

We next describe some of the other options which are available to generate and/or
manipulate a mesh. Again we consider the example problem to make the discussion
specific.

The preceding format to generate the data for a finite element mesh for the example
problem is quite restrictive. If it is desired to increase the number of nodes and elements
it is necessary to restart the process from the very beginning. Thus, we now consider
options for describing the mesh which permit the problem to be described more easily,
as well as, permit the number of nodes and elements to be increased or decreased.
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FEAP has some powerful options which permit the generation of problems in a form
amenable to refinement. For example, the control record pair may be specified with 0
nodes, 0 elements, and/or 0 materials indicated. FEAP will use the subsequent data to
compute the number of nodes, elements, and material sets in the mesh2. Accordingly,
it is possible to use:

FEAP * * Example 1. Circular Disk: Block inputs
0 0 0 2 2 4

Without additional features this is of little merit. However, nodes and elements may
be generated using a BLOCk command as:

PARAmeter
m = 2
n = 2

! End of parameters
BLOCk 1
CARTesian,m,n,1,1,1

1 0.0 0.0
2 0.5 0.0
3 0.4 0.4
4 0.0 0.5

! Blank termination record

A BLOCk command uses a regular subdivision of the parent master element shown in
Figure 5.2 to describe the mesh within its perimeter. In Figure 5.2 the coordinate
directions 1 and 2 are local axes for the BLOCk generation (i.e., the natural coordinates
for an isoparametric master element). Using this convention, BLOCk 1 is described
by a 4 node quadrilateral master element whose coordinates are specified as shown
above. The first record states that the master element coordinates will be specified in
cartesian form (other options are POLAr and SPHErical), the block will be divided into
m subdivisions in the 1 direction and n subdivisions in the 2 direction (an m×n mesh
of quadrilaterals), with the first node, element, and material set numbers set to 1. The
values for m and n are assigned prior to the BLOCk specification using the PARAmeter

command followed by the description of parameters. Each parameter may only be one
character between a and z (FEAP converts all data to lower case internally, hence only
26 parameters are available for use at any one time. Parameters may, however, be
redefined at later stages of the data.

Parameters for the sine and cosine of the angles at the middle of the circular part of
blocks are defined by:

PARAmeters
p = atan(1.)

2If user mesh functions are employed this feature may not work correctly



CHAPTER 5. EXAMPLE 3. CIRCULAR DISK 24

1

2

1 2

34

5

6

7

8 9

Figure 5.4: Node Sequence to Define Master Nodes on a Block

s = sin(0.5*p)
c = cos(0.5*p)

! Blank termination record

Alternatively, the inputs may be specified directly in degrees using the expressions

PARAmeters
s = sind(22.5)
c = cosd(22.5)

! Blank termination record

Consult Chapter 4 of the User Manual for a list of all functions which may be used in
expressions.

The additional blocks needed to define the circular disk then may be given as:

BLOCk 2
CARTesian,n,n

1 0.5 0.0
2 1.0 0.0
3 0.701 0.701
4 0.4 0.4
6 c s

! Blank termination record

BLOCk 3
CARTesian,n,n

1 0.4 0.4
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2 0.701 0.701
3 0.0 1.0
4 0.0 0.5
6 s c

! Blank termination record

The PARAmeter command also permits arithmetic calculations to be performed (see
Chapter 4 of the User Manual for further information). In the above, the parameter
p is set to 0.25π (i.e., 45 degrees) and s and c are the sin and cosine of 22.5 degrees.
The second and third blocks are also 2×2 meshes of quadrilaterals since the value of n
has not been changed; however, each of these blocks are described on an element with
one edge curved along the circular boundary of the disk. Note also, that after defining
the initial generation sequence for the node and element numbers on the first block all
others have zero numbers. FEAP will be able to compute the number for the first node
and element of each block so that the final mesh has 12 elements and 27 nodes (it is
necessary to merge the blocks to produce a mesh with only 19 active nodes needed to
define the problem).
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Figure 5.5: Finite Element Mesh for Circular Disk using Block Commands and Merging

The boundary conditions and applied nodal load may also be defined such that it is not
necessary to know node numbers by using EBOUndary (for edge boundary specification)
and CFORced commands (for coordinate point force loading), respectively. Accordingly,

EBOUndary ! Edge boundary restraints
1 0.0 1 0
2 0.0 0 1

! Blank termination record
CFORce ! Coordinate specified forces

NODE 0.0 1.0 0.0 -5.0
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! Blank termination record
MATErial,1

SOLId
ELAStic ISOTropic 10000 0.25
DENSity data 0.10
QUADrature data 2 2

! Blank termination record
END
TIE ! Tie nodes with same coordinates.

accomplish these steps and complete the description for the mesh and its material
properties. Note particularly, the TIE command following the generation of the mesh.
This command will merge the three blocks to form a mesh which is equivalent to the
original mesh (however, this mesh has different numbering for nodes and elements
than the first mesh generated). The numbers for the active nodes after the merge and
the element numbers produced by the block commands are shown in Figure 5.5. The
advantage of this form, however, is the ease by which the mesh can be refined. Indeed
by assigning the parameter n (and m) a value of 5, one obtains a mesh with 75 elements
as shown in Figure 5.6.

Figure 5.6: Mesh for Circular Disk. 75 Elements

Since the boundary conditions are associated with an edge, all nodes which lie on the
edge will be identified and restrained. Similarly, the node with the specified coordinates
will be identified for the applied F2 = −5.0 force. Additional details on options for the
CFORce command are given in the mesh user manual pages in Appendix A.

Once the mesh is described the problem may be solved using the solution command
language. Two modes of execution are available: A batch mode where FEAP enters
a solution mode and processes all data without user intervention; and an interactive
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mode where the user issues each command or command group and receives prompts
for additional data. An analysis may use multiple batch and/or interactive solutions
in the same analysis. To enter a batch execution the user inserts a command BATCh
after the mesh END record (and any other commands which manipulate the mesh, e.g.,
TIE), whereas to enter an interactive mode the command INTEractive is inserted.
The BATCh execution command must be immediately followed by the other solution
commands and terminates with an END command. To perform a batch mode static
(steady state) solution for the example problem the commands

BATCh
TANGent ! Form tangent (K)
FORM ! Form residual (R)
SOLVe ! Solve K*du = R

END ! End of batch execution

may be included in the input data file after the TIE command. Alternatively, the
command

INTEractive

may be included and the other commands given sequentially after receiving the

Macro 1.>

prompt. With either mode FEAP process the sequence of commands to produce a
solution; however, no report of the results is provided unless specifically requested. To
output all the nodal displacement values for the current solution state the command

DISPlacement,ALL

may be given. Similarly, the commands

STREss,ALL
REACtion,ALL

produce outputs for all the element variables (stresses and any other values included
in the element output section) and reactions for all the nodes. The order of output
is controlled by the order of issuing the commands. If the solution is converged then
nodal reactions should be zero (numerically) for all degree-of-freedoms which are not
restrained. Restrained degree-of-freedoms report the reaction force necessary to impose
the specified displacement constraint.

Alternatively, graphical outputs may be requested. For example, the commands
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PLOT,MESH
PLOT,LOAD,,-1

produce the results shown in Figure 5.6. Contour plots are also possible. Shaded
contours for the vertical displacements are shown in Figure 5.7 and are obtained using
the command

PLOT,CONT,2

Additional information on solution and plot commands is included in Chapters 11 and
12 of the User Manual, respectively.
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Figure 5.7: Contours of Vertical Displacement for Circular Disk



Chapter 6

Example 4. Strip with Hole and
Slit.

As a next example we consider the analysis of a tension strip which contains a hole
but has a slit between the hole and the right boundary as shown in Figure 6.1. The
strip is to be loaded by applying vertical displacements along the top and bottom. The
possibility of having different materials for the top and bottom halves is anticipated
and, thus, the entire mesh needs to be constructed.

Figure 6.1: Tension Strip with Hole and Slit

To construct the mesh a set of 8 blocks of nodes and elements will be constructed
and merged to form the final analysis. Since the mesh has a considerable amount
of symmetry it is proposed to generate the two blocks for one quadrant using the
BLOCk mesh command and then use the TRANsformation command to form the other
quadrants. The steps to form the mesh may be summarized as follows.

1. Assign REGIon 1 as the first quadrant.

29
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2. Use the BLOCk command to form the two blocks for the first quadrant. Save the
mesh for the first quadrant in a file called IHQUAD.

3. Use an INCLude, IHQUAD in a problem data file (e.g., file ISTRIP) to import the
data for quadrant 1 (see Chapter 4 of the User Manual for more information on
use of the include option.

4. Assign the second and third quadrants to REGIon 2.

5. Set the TRANsformation to reflect the x-axis and use an INCLude, tt IHQUAD
to generate the 2 blocks for the second quadrant. Note that since the coordi-
nate transformation is not a rotation the generated elements may have negative
volume.

6. Set the TRANsformation to reflect the x-axis and y-axes. Use an INCLude, IHQUAD
to generate the 2 blocks for the third quadrant.

7. Assign the fourth quadrants to REGIon 3.

8. Set the TRANsformation to reflect y-axes. Use an INCLude, IHQUAD to generate
the 2 blocks for the fourth quadrant.

The commands to perform the transformations and read the include files are summa-
rized in Figure 6.2.

The outlines for all the blocks formed after this step are shown in Figure 6.3. It is
necessary now to merge these blocks to form the final mesh, while retaining the slit,
which if not properly treated will be merged also during the use of a TIE command.

It is at this time that the utility of the REGIon descriptions is used. A summary of the
merge order is as follows

1. Merge each of the regions with itself. The result of this step is shown in Figure
6.4.

2. Merge region 1 with region 2; also merge region 2 with region 3. This will produce
the final mesh whose outline was shown in Figure 6.1.

The TIE commands to achieve these two steps are:

TIE,REGIon,1,1
TIE,REGIon,2,2
TIE,REGIon,3,3
TIE,REGIon,1,2
TIE,REGIon,2,3
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FEAP * * Tension Strip With Hole and Slit
0,0,0,2,2,4
PARAmeters

d=1 ! First node number
e=1 ! First element number
m=1 ! Material set number
n=8 ! Size of blocks

! Terminator
REGIon,1 ! Assigns 1st quadrant to region 1

INCLude,IHQUAD ! Input first quadrant
PARAmeters

d=0 ! To make feap count nodes
e=0 ! To make feap count elements

! Terminator
REGIon,2 ! Assign 2nd and 3rd quadrant

TRANsform ! Reverse x axis for second quadrant
-1,0,0
0,1,0
0,0,1
0,0,0

INCLude,IHQUAD
TRANsform ! Reverse x,y axis for third quadrant

-1,0,0
0,-1,0
0,0,1
0,0,0

INCLude,IHQUAD
REGIon,3 ! Assign 4th quadrant to region 3

TRANsform ! Reverse y axis for fourth quadrant
1,0,0
0,-1,0
0,0,1
0,0,0

INCLude,IHQUAD
END

Figure 6.2: Region, Transformation, and Include Structure
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Figure 6.3: Tension Strip: Block Structure Before Merges

Figure 6.4: Tension Strip: After Merge of Each Region with Itself

The generation of the two blocks forming each quadrant is achieved using the commands
shown in Figure 6.5.

Finally, the displacements on the top and bottom edges are specified using the com-
mands given in Figure 6.6.

An analysis using this data produced the results for the σyy stress shown in Figure 6.

Since no explicit use of node element numbers appears in any of the data it is possible
to run a number of problems using the same data but different values for the mesh gen-
eration parameter n. Indeed all problems may be performed during the same execution
of the program by defining a master input file, say ISLIT which has the values for the
parameters. The file ISLIT can contain the data shown in Fig. 6.8. It is necessary to
remove the definition of the parameter n from the ISTRIP file. It is further assumed
that the solution commands are also contained in the ISTRIP file or in a file which is
referenced by an include file. Finally, no STOP command should be referenced by the
ISTRIP file. FEAP will perform all three problems and place the output sequentially
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PARAm
c=cosd(45.0)
s=sind(45.0)
a=cosd(22.5)
b=sind(22.5)

! Termination
BLOCk

CART,n,n,d,e,m
1,1,0
2,6,0
3,6,8
4,s,c
5,2.6,0
7,2.1,2.8
8,a,b
9,2.5,1.2

! Termination
BLOCk

CART,n,n,0,0,m
1,s,c
2,6,8
3,0,8
4,0,1
5,2.1,2.8
7,0,3.1
8,b,a
9,1.1,3.0

! Termination

Figure 6.5: Tension Strip with Slit: Block Generation of Quadrant

EBOUndary
2 8 0 1 0
2 -8 0 1 0

! Termination
CBOUndary

node -6 0 1 0
! Termination

EDISplacements
2 8 0 0.5
2 -8 0 -0.5

! Termination
MATErial 1

SOLId
ELAStic ISOTopic 10000 0.25

! Termination

Figure 6.6: Tension Strip with Slit: Boundary and Material Parameters
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Figure 6.7: Tension Strip with Slit: Contours of σyy

PARAmeter
n = 4

INCLude ISTRIP

PARAmeter
n = 8

INCLude ISTRIP

PARAmeter
n = 16

INCLude ISTRIP

STOP

Figure 6.8: Include data for tension strip refinements
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in the file named OSLIT.

The same methodology also may be used to run a sequence of different problems. In
this case a reference by the include statement would name each of the problem files to
be solved.
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Example 5. Thermal Problem.

In this example we consider the solution of a linear thermal problem. The domain for
the solution is a square with side lengths of 5-units. A steady state and a transient
thermal analysis are to be performed. For the steady state analysis a temperature of
T = 1 is applied on the entire left boundary and the right boundary is restrained to
have temperature zero. For the transient problem the left side has a specified unit
temperature (T = 1) suddenly applied at time zero and held constant and the right
boundary is insulated (qn = 0). The thermal material parameters are set as follows:

k = 10 c = 1 ρ = 0.1

The problem is solved using a 10× 10 uniform mesh of 9-node quadrilateral elements.
For the above properties the material data is specified as:

MATErial 1
THERmal

FOURIER ISOTROPIC 10.0 1.0
DENSITY MASS 0.10

The mesh is generated using the block command with the data

FEAP
0 0 0 2 1 9

BLOCK
CARTESIAN 20 20 0 0 1 0 9

1 0.0 0.0
2 5.0 0.0
3 5.0 5.0
4 0.0 5.0

EBOUnd

36
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1 0 1
1 5 1 ! Use for steady state problem only

EDISpl
1 0 1

MATE 1
... (material properties as above)

END

A plot of the mesh is shown in Fig 7.1

Figure 7.1: Mesh of 9-node elements

The solution to the steady state heat problem is given by:

T (x, y) = 1− x

5

and is exactly captured by the finite element solution as indicated in Fig. 7.2. This
solution was computed using the commands:

BATCh
TANGent,,1 ! Solve problem
PLOT,CONTour,1 ! Contour solution

END

The transient solution is computed using a transient solution. This may be accom-
plished by inserting an ORDEr command after the mesh END command and before the
first solution execution. The order command is given as
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Figure 7.2: Steady state temperature solution (Patch test).

ORDER
1

where the 1 restricts transients for the heat equation to a first-order differential equa-
tion. Any time integrator could be tried, however, in the results given below the back-
ward Euler scheme was used (i.e., TRANsient,BACKward. The solution was performed
for 20 time steps of ∆t = 0.005 with the command language program:

BATCH
PARAmeter
DT,,dt ! Sets to parameter value
TRANs,BACK
LOOP,,20

TIME
TANG,,1 ! Problem linear, no iterations
PLOT,RANG,0.4,0.9
PLOT,WIPE
PLOT,CONT,3 ! Temperature contours

NEXT
END
dt= 0.0001

! End of parameter input

A solution at later times is continued using larger time steps. Generally, the solution
can be computed by increasing the time increment by factors of 10 every logarithmic
decade of time using a FEAP function program. The function program is contained
in a file with the extender .fcn. For example a routine for the time increment can be
given by:
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dt = 10*dt

stored in the file tinc.fcn. The solution commands are then performed using the set
of commands:

BATCh
DT,,dt
LOOP,,4

FUNC,tinc
LOOP,,9

TIME
TANG,,1

NEXT
NEXT

END

This will continue the solution to time 10.

Results for the temperature contours at selected times are shown in Figs 7.3 to 7.4.
Note that this problem produces one dimensional results and could be solved using a
much simpler meshing.
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Figure 7.3: Temperature contours at t = 0.001 and t = 0.01
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Example 6. Coupled
Thermo-mechanical Problem.

In this example we consider the solution of a thermo-mechanical problem in a state of
plane strain. The domain for the solution is a square with side lengths of 5-units. A
vertical roller support is specified at the upper right-hand corner and a pin support at
the lower right-hand corner. This is just sufficient to prevent rigid body motions for a
static problem. Loading is provided by a transient thermal analysis in which the left
side has a specified unit temperature (T = 1) suddenly applied at time zero and held
constant. The material parameters are set as follows:

1. Solid:
E = 100 ν = 0.4995a α = 0.25 T0 = 0

2. Thermal:
k = 10 c = 1 ρ = 0.1

The problem is solved using a 10× 10 uniform mesh of 9-node quadrilateral elements.
The mixed formulation is used. With the above properties and element, the material
data is specified as:

MATErial 1
SOLID

ELASTIC ISOTROPIC 100 0.4995
THERMAL ISOTROPIC 0.25 0.0
FOURIER ISOTROPIC 10.0 1.0
DENSITY MASS 0.10
MIXED

The mesh is generated using the block command with the data

41
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FEAP
0 0 0 2 3 9

BLOCK
CARTESIAN 20 20 0 0 1 0 9

1 0.0 0.0
2 5.0 0.0
3 5.0 5.0
4 0.0 5.0

CBOUN
NODE 5 0 1 1
NODE 5 5 1 0

EDIS
1 0 0 0 1

MATE 1
... (material properties as above)

END

A plot of the mesh is shown in Fig 8.1

Figure 8.1: Mesh of 9-node elements

The solution of the solid mechanics problem is assumed to be at a time scale for which
inertial effects may be ignored. The heat equation, however, is to be solved using a
transient solution. This may be accomplished by inserting an ORDEr command after
the mesh END command and before the first solution execution. The order command
is given as
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ORDER
0 0 1

where the 0 denotes a zero-order (i.e., static) differential equation form and the 1
restricts transients for the heat equation to a first-order differential equation. Any
time integrator could be tried, however, in the results given below the backward Euler
scheme was used (i.e., TRANsient,BACKward. The solution was performed for 20 time
steps of ∆t = 0.005 with the command language program:

BATCH
DT,,0.005
TRANs,BACK
PLOT,DEFOrm
PLOT,FACT,0.7 ! to keep plot in window
LOOP,,20

TIME
LOOP,,5 ! Note that at least 3 iterations

TANG,,1 ! are needed to converge (since no
NEXT ! compling tangent is included)
PLOT,WIPE
PLOT,RANG,0.4,0.9
PLOT,CONT,3 ! Temperature contours
PLOT,RANG,-1.0,0.2
PLOT,STRE,1 ! 11-Stress contours

NEXT
END

Results for the contours after the first and last step are shown in Fig 8.2 and 8.3.
Numerical results for displacments and temperatures along the row of nodes at x1 =
0.25 (center of left row of elemements) are included in Table 8.1
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Figure 8.2: Thermal stress problem: Time = 0.005

The temperature for the row of nodes shown in the table is constant along the line
x1 = 0.25 and equals 0.70261 at time step 1 and 0.96363 at step 20.
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Figure 8.3: Thermal stress problem: Time = 0.100

Time = 0.005 Time = 0.10
Node x2 u1 u2 u1 u2

22 5.00 1.527E-02 5.254E-01 -1.188E+00 1.370E+00
23 4.75 -7.526E-02 4.576E-01 -1.216E+00 1.279E+00
24 4.50 -1.358E-01 3.921E-01 -1.240E+00 1.189E+00
25 4.25 -1.788E-01 3.314E-01 -1.261E+00 1.099E+00
26 4.00 -2.101E-01 2.731E-01 -1.278E+00 1.010E+00
27 3.75 -2.328E-01 2.180E-01 -1.293E+00 9.207E-01
28 3.50 -2.496E-01 1.651E-01 -1.304E+00 8.316E-01
29 3.25 -2.614E-01 1.143E-01 -1.313E+00 7.428E-01
30 3.00 -2.695E-01 6.483E-02 -1.319E+00 6.543E-01
31 2.75 -2.740E-01 1.640E-02 -1.322E+00 5.658E-01
32 2.50 -2.756E-01 -3.160E-02 -1.324E+00 4.774E-01
33 2.25 -2.740E-01 -7.961E-02 -1.322E+00 3.891E-01
34 2.00 -2.695E-01 -1.280E-01 -1.319E+00 3.006E-01
35 1.75 -2.614E-01 -1.775E-01 -1.313E+00 2.120E-01
36 1.50 -2.496E-01 -2.283E-01 -1.304E+00 1.233E-01
37 1.25 -2.328E-01 -2.812E-01 -1.293E+00 3.424E-02
38 1.00 -2.101E-01 -3.363E-01 -1.278E+00 -5.505E-02
39 0.75 -1.788E-01 -3.947E-01 -1.261E+00 -1.447E-01
40 0.50 -1.358E-01 -4.553E-01 -1.240E+00 -2.346E-01
41 0.25 -7.526E-02 -5.208E-01 -1.216E+00 -3.248E-01
42 0.00 1.527E-02 -5.886E-01 -1.188E+00 -4.151E-01

Table 8.1: Solution for displacements at time step 1 and 20
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Example 7. Contact Problem.

In this example we consider the solution of a two-dimensional contact problem. Two
beams are placed a short distance apart with the top beam loaded by a uniformly
distributed vertical load.

Each beam has a length of 20 units and the spacing between the beams is 0.5 units.
The upper beam is divided into 11 equal length elements and the lower beam into 10
equal length elements. Each beams is clamped at both ends. Beams are modelled using
the finite deformation FRAMe element. The material model is elastic (E = 20, 000) with
a cross sectional area A = 0.1 and moment of inertia I = 1.

The upper beam is loaded by a uniform load which produces a vertical load of 20× t
units at each node (where t is time). During the analysis t increases from zero to 5 in
equal increments of 0.1 units.

The mesh is generated using the commands:

FEAP
0 0 0 2 3 2

PARAmeters
pr = -20 ! Nodal loading
a = 20 ! Lower beam length
b = 20 ! Upper beam length
h = 0.5 ! Spacing between beams

BLOCK
CARTesian 10 1 0 0 1

1 0.0 0.0
2 a 0.0

BLOCK
CARTesian 11 1 0 0 2

1 0.0 h

45
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2 b h

EBOUnd
1 0 1 1 1
a 0 1 1 1

EFORce
2 h 0 pr

MATE 1
FRAMe

ELAStic ISOTropic 20000
CROSs section 0.1 1
FINIte

MATE 2
FRAMe

ELAStic ISOTropic 20000
CROSs section 0.1 1
FINIte

END

A plot of the mesh is shown in Fig 9.1

               Time = 5.00E+00

Figure 9.1: Mesh of two beams

The solution of a contact problem requires the specification of each individual surface
to be considered and each pair of surfaces for which possible contacts are to be checked.
Each surface is defined using a right-hand rule to specify the outward pointing normal.
In the present example the contact between the two parallel beams is to be defined. The
lower beam is designated as contact surface number 1 and surface facets are defined
from the right end to the left end to satisfy the right-hand rule giving a outward
normal pointing up on the figure. Similarly, the upper beam is designated as contact
surface 2 and facets are numbered from left to right to give an outward normal pointing
down. The two surfaces are specfied to interact using the PAIR command with surface
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1 being the slave and surface 2 the master. A node to surface contact with a penalty
solution scheme is adopted (command NTOS) with an augmented lagrange correction
applied (AUGM). The data for a contact follows the mesh description and for the present
example is given by:

CONTact

SURFace 1
LINE 2
FACEt
1 -1 11 10

10 0 2 1

SURFace 2
LINE 2
FACEt
1 1 12 13

11 0 22 23

PAIR 1
NTOS 1 2
SOLM PENAlty 2e3
AUGMent
TOLE,,1e-5 1e-5 1e-5

END

A solution to the problem is obtained using the commands:

BATCh
PROP
DT,,0.1

END

BATCh
LOOP,time,50

TIME
LOOP,augment,4

LOOP,newton,30
TANG,,1

NEXT
AUGMent

NEXT
NEXT

END

Note especially, the extra loop required to perform the augmentation.

Results for the deformed shape and contours of the final gap achieved (constructed
using the plot command PLOT,CVAR,9, 9= gap) are shown in Fig. 9.2.
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               Time = 5.00E+00
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Figure 9.2: Contact deformed shape and gap: Time = 5
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Example 8. Plasticity Problem.

In this example we consider the solution of a plane strain, two-dimensional continuum
problem with an elasto-plastic J2 model. The domain for the problem is a square
(with side lengths of 200 mm.) which has a central circular hole (with radius 10 mm.).
The top and bottom boundary surfaces are subjected to a uniform normal loading of
450 MPa. Due to the symmetry of the problem only one quadrant is modeled and
symmetry boundary conditions are imposed as

u1 = 0 ; on x1 = 0

u2 = 0 ; on x2 = 0

The data for 992 nodes and 900 elements is generated using the commands:

FEAP
0 0 0 2 2 4

PARAmeters
r = 10
h = 100
f = 0.4
d = 0.35
m = 15
n = 2*m

SNODes
1 0 0
2 r 0
3 r*sind(45) r*cosd(45)
4 0 r
5 h 0
6 h h
7 0 h
8 f*h 0

49
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9 0 f*h
10 d*h d*h

SIDE
polar 2 3 1
polar 3 4 1
cart 2 5 8
cart 3 6 10
cart 4 7 9

BLENd
surf n m 0 0 1
2 5 6 3

BLENd
surf n m 0 0 1
3 6 7 4

The boundary conditions and loading are specified by the commands:

EBOUn
1 0 1 0
2 0 0 1

CSURf
line
1 h h 450.
2 0 h 450.

A plot of the mesh for the region modeled is shown in Fig 10.1

The material properties for the J2 elasto-plastic model are: bulk modulus, K =
16.4206 × 105 MPa, Shear modulus, µ = 0.801938 MPa and uniaxial yield stress,
σy = 450 MPa. The material has no hardening. The material is nearly incompressible,
even in the elastic range; consequently a mixed formulation is used with a Q1P0 for-
mulation. The analysis is performed as a finite deformation problem. The data for the
element type and material properties is given as:

PARAmeters
mu = 80193.8
k = 1642060
nu = (3*k - 2*mu)/(2*mu + 6*k)
e = 2*(1+nu)*mu
y = 450.

MATErial 1
solid
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Figure 10.1: Mesh of elasto-plastic tension strip

elastic isotropic e nu
plastic mises y
mixed
finite

Note that the element requires elastic properties to be given as Young’s modulus and

Poisson ratio (which are computed from the bulk and shear modulus).

Since the mesh consists of two blend regions it is necessary to TIE them together prior

to performing the analysis. The problem is subjected to the cyclic loading shown in

Fig. 10.2 and performed using a sequence of time steps of ∆t = 0.1.
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Figure 10.2: Proportional loading

The command language statements for the analysis are given as:

TIE

BATCh
PROP
DT,,0.1

END
2 5
0 0 1 1 2 0 3 -1 4 0

BATCh
NOPRint
PLOT,RANGe,0,440
LOOP,,40

TIME
LOOP,,30

TANG,,1
NEXT
PLOT,PSTRe,6,,1

NEXT
END



CHAPTER 10. EXAMPLE 8. FINITE DEFORMATION PLASTICITY 53

The solution summary for the finite deformation case is shown below (times are for a
PIII, 650MHz processor).

SOLUTION SUMMARY
----------------
Load Total Solution Residual Norm Energy Norm CPU Time
Step Iter.+Forms Time Initial Final Initial Final (Seconds)
----------------------------------------------------------------------------

1 3 0 1.000E-01 1.14E+03 9.34E-08 6.78E+01 1.46E-19 1.05
2 3 0 2.000E-01 1.14E+03 9.99E-08 6.78E+01 1.47E-19 1.80
3 3 0 3.000E-01 1.14E+03 9.54E-08 6.78E+01 1.46E-19 2.54
4 3 0 4.000E-01 1.14E+03 9.65E-08 6.79E+01 1.47E-19 3.28
5 5 0 5.000E-01 1.14E+03 5.65E-08 6.79E+01 7.77E-22 4.43
6 5 0 6.000E-01 1.14E+03 1.29E-06 6.79E+01 8.33E-18 5.55
7 6 0 7.000E-01 1.14E+03 5.67E-08 6.79E+01 8.04E-22 6.89
8 7 0 8.000E-01 1.14E+03 5.94E-08 6.80E+01 8.59E-22 8.42
9 7 0 9.000E-01 1.14E+03 6.03E-08 6.80E+01 9.41E-22 9.98

10 8 0 1.000E+00 1.14E+03 4.63E-06 6.80E+01 5.14E-17 11.78
11 3 0 1.100E+00 1.14E+03 9.47E-08 6.81E+01 1.49E-19 12.53
12 3 0 1.200E+00 1.14E+03 9.56E-08 6.80E+01 1.48E-19 13.28
13 3 0 1.300E+00 1.14E+03 9.48E-08 6.80E+01 1.48E-19 14.02
14 3 0 1.400E+00 1.14E+03 9.96E-08 6.80E+01 1.48E-19 14.77
15 3 0 1.500E+00 1.14E+03 1.01E-07 6.80E+01 1.48E-19 15.51
16 3 0 1.600E+00 1.14E+03 9.72E-08 6.79E+01 1.47E-19 16.24
17 3 0 1.700E+00 1.14E+03 9.65E-08 6.79E+01 1.47E-19 16.98
18 3 0 1.800E+00 1.14E+03 9.63E-08 6.79E+01 1.46E-19 17.69
19 5 0 1.900E+00 1.14E+03 8.61E-08 6.78E+01 4.22E-20 18.82
20 5 0 2.000E+00 1.14E+03 5.71E-08 6.78E+01 9.01E-22 19.98
21 5 0 2.100E+00 1.14E+03 6.23E-07 6.78E+01 3.14E-18 21.11
22 5 0 2.200E+00 1.14E+03 9.22E-07 6.77E+01 4.26E-18 22.25
23 5 0 2.300E+00 1.14E+03 1.03E-05 6.77E+01 5.73E-16 23.39
24 5 0 2.400E+00 1.14E+03 1.47E-05 6.77E+01 1.22E-15 24.54
25 6 0 2.500E+00 1.14E+03 5.35E-08 6.77E+01 6.91E-22 25.89
26 6 0 2.600E+00 1.14E+03 5.25E-08 6.76E+01 6.74E-22 27.24
27 6 0 2.700E+00 1.14E+03 6.61E-07 6.76E+01 1.35E-18 28.58
28 7 0 2.800E+00 1.14E+03 5.31E-08 6.76E+01 7.14E-22 30.13
29 8 0 2.900E+00 1.14E+03 5.18E-08 6.75E+01 6.73E-22 31.93
30 8 0 3.000E+00 1.14E+03 5.71E-08 6.75E+01 7.92E-22 33.74
31 3 0 3.100E+00 1.14E+03 9.18E-08 6.74E+01 1.42E-19 34.48
32 3 0 3.200E+00 1.14E+03 9.69E-08 6.75E+01 1.43E-19 35.23
33 3 0 3.300E+00 1.14E+03 9.35E-08 6.75E+01 1.43E-19 35.98
34 3 0 3.400E+00 1.14E+03 9.15E-08 6.75E+01 1.43E-19 36.73
35 3 0 3.500E+00 1.14E+03 9.44E-08 6.76E+01 1.44E-19 37.47
36 3 0 3.600E+00 1.14E+03 9.22E-08 6.76E+01 1.44E-19 38.23
37 3 0 3.700E+00 1.14E+03 9.24E-08 6.76E+01 1.44E-19 38.97
38 3 0 3.800E+00 1.14E+03 9.62E-08 6.77E+01 1.45E-19 39.71
39 5 0 3.900E+00 1.14E+03 5.22E-07 6.77E+01 2.80E-18 40.85
40 5 0 4.000E+00 1.14E+03 5.89E-08 6.77E+01 7.80E-22 41.99
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The solution summary for a small deformation case (remove the FINIte material
record) is given below (times are for a PIII, 650MHz processor).

SOLUTION SUMMARY
----------------
Load Total Solution Residual Norm Energy Norm CPU Time
Step Iter.+Forms Time Initial Final Initial Final (Seconds)
----------------------------------------------------------------------------

1 2 0 1.000E-01 1.14E+03 2.12E-10 6.78E+01 7.60E-26 0.59
2 2 0 2.000E-01 1.14E+03 2.30E-10 6.78E+01 7.82E-26 0.94
3 2 0 3.000E-01 1.14E+03 2.61E-10 6.78E+01 8.18E-26 1.29
4 2 0 4.000E-01 1.14E+03 3.06E-10 6.78E+01 8.33E-26 1.65
5 5 0 5.000E-01 1.14E+03 8.02E-10 6.78E+01 4.47E-24 2.37
6 5 0 6.000E-01 1.14E+03 1.33E-06 6.78E+01 8.89E-18 3.11
7 6 0 7.000E-01 1.14E+03 3.52E-10 6.78E+01 3.28E-26 3.98
8 6 0 8.000E-01 1.14E+03 6.74E-06 6.78E+01 1.93E-16 4.85
9 7 0 9.000E-01 1.14E+03 3.55E-08 6.78E+01 5.00E-21 5.85

10 8 0 1.000E+00 1.14E+03 4.42E-06 6.78E+01 5.05E-17 6.99
11 2 0 1.100E+00 1.14E+03 6.20E-10 6.78E+01 1.44E-25 7.33
12 2 0 1.200E+00 1.14E+03 5.43E-10 6.78E+01 1.30E-25 7.68
13 2 0 1.300E+00 1.14E+03 5.11E-10 6.78E+01 1.19E-25 8.01
14 2 0 1.400E+00 1.14E+03 4.68E-10 6.78E+01 1.10E-25 8.33
15 2 0 1.500E+00 1.14E+03 4.22E-10 6.78E+01 1.03E-25 8.66
16 2 0 1.600E+00 1.14E+03 3.83E-10 6.78E+01 9.56E-26 9.01
17 2 0 1.700E+00 1.14E+03 3.28E-10 6.78E+01 9.13E-26 9.36
18 2 0 1.800E+00 1.14E+03 3.03E-10 6.78E+01 8.60E-26 9.69
19 5 0 1.900E+00 1.14E+03 1.59E-07 6.78E+01 2.68E-19 10.44
20 5 0 2.000E+00 1.14E+03 3.74E-09 6.78E+01 1.22E-22 11.18
21 5 0 2.100E+00 1.14E+03 3.03E-07 6.78E+01 6.33E-19 11.92
22 6 0 2.200E+00 1.14E+03 9.99E-11 6.78E+01 4.05E-27 12.82
23 5 0 2.300E+00 1.14E+03 9.51E-06 6.78E+01 4.81E-16 13.56
24 5 0 2.400E+00 1.14E+03 1.34E-05 6.78E+01 9.86E-16 14.30
25 6 0 2.500E+00 1.14E+03 2.09E-10 6.78E+01 9.33E-27 15.19
26 6 0 2.600E+00 1.14E+03 2.03E-09 6.78E+01 3.26E-23 16.06
27 6 0 2.700E+00 1.14E+03 1.77E-07 6.78E+01 1.00E-19 16.95
28 7 0 2.800E+00 1.14E+03 5.59E-05 6.78E+01 4.75E-15 17.96
29 8 0 2.900E+00 1.14E+03 4.20E-09 6.78E+01 5.83E-23 19.09
30 8 0 3.000E+00 1.14E+03 1.32E-09 6.78E+01 6.17E-24 20.25
31 2 0 3.100E+00 1.14E+03 5.87E-10 6.78E+01 1.43E-25 20.56
32 2 0 3.200E+00 1.14E+03 4.95E-10 6.78E+01 1.18E-25 20.89
33 2 0 3.300E+00 1.14E+03 4.80E-10 6.78E+01 1.20E-25 21.23
34 2 0 3.400E+00 1.14E+03 4.34E-10 6.78E+01 1.03E-25 21.56
35 2 0 3.500E+00 1.14E+03 3.80E-10 6.78E+01 9.84E-26 21.89
36 2 0 3.600E+00 1.14E+03 3.54E-10 6.78E+01 9.45E-26 22.23
37 2 0 3.700E+00 1.14E+03 3.24E-10 6.78E+01 9.00E-26 22.54
38 2 0 3.800E+00 1.14E+03 3.07E-10 6.78E+01 8.64E-26 22.88
39 5 0 3.900E+00 1.14E+03 1.79E-07 6.78E+01 3.41E-19 23.60
40 5 0 4.000E+00 1.14E+03 1.08E-09 6.78E+01 6.14E-24 24.34

Note that linear elasticity requires only 2 iterations during elastic behavior.


