Nicola Tarque Ruíz

Telefono: 
+34 910674175

Doctor en Ingeniería Estructural y Sísmica por la Universidad de Pavía (Italia, 2008-2011). En el 2012 obtuvo una beca para participar en una investigación posdoctoral en la misma universidad y en colaboración con la Universidad Gabriele d'Annunzio. En el 2013, participó como becario postdoctoral en la Universidad de Bolonia en un proyecto conjunto con la Universidad de Gabriele d'Annunzio. Actualmente soy investigador-docente en la ETSI Caminos, Canales y Puertos de la UPM y en la Pontificia Universidad Católica del Perú.

Es miembro experto de ISCARSAH (ICOMOS), participa dentro del comité técnico de las normas de diseño y construcción en Adobe (E080) y Albañilería (E070) en Perú, y es miembro invitado en el Comité de Contenidos del Código Modelo Sísmico para Latino América y El Caribe.

elementos

Teaching/Docencia
  1. Análisis estructural de construcciones históricas de fábrica./em>. Máster en Ingeniería de Caminos, Canales y Puertos, UPM.
  2. Método de elementos finito. Máster en Ingeniería de Estructuras, Cimentaciones y Materiales, UPM.
  3. Métodos computacionales en ingeniería civil. Máster en Ingeniería de Caminos, Canales y Puertos, UPM.
Research/Investigación

A lo largo de su carrera, ha estado involucrado en proyectos relacionados con la albañilería armada y no armada (material de tierra, piedra, ladrillo de arcilla cocida). También estuvo a cargo de ensayos cíclicos pseudoestáticos en el plano de muros de mampostería y ensayos dinámicos de casas de adobe a escala completa y reducida (con y sin refuerzo). Su principal campo de trabajo se refiere al análisis dinámico no lineal de estructuras (tierra, mampostería), modelado de elementos finitos, diseño sísmico de estructuras de mampostería y hormigón armado, vulnerabilidad sísmica, amenaza sísmica, evaluación de riesgo sísmico y amplificación de movimientos del suelo.

Publications/Publicaciones
  1. Loa G, Tarque N and Condori C. 2022. Experimental and numerical modelling studies of slender reinforced concrete walls with single-layer reinforcement in Peru. Engineering Structures, Vol. 273, Article number 115029. https://doi.org/10.1016/j.engstruct.2022.115029
  2. Tarque N, Manchego A, Lovón H, Blondet M and Varum H. 2022. Experimental in-plane behaviour and drift-based fragility assessment of typical Peruvian confined masonry walls. Construction and Building Materials. Volume 341, 25 julio 2022, Article number 127893. https://doi.org/10.1016/j.conbuildmat.2022.127893
  3. Fages J.M., Tarque N, Rodríguez-Mariscal J and Solís M. 2022. Calibration of a total strain crack model for adobe masonry based on compression and diagonal compression tests. Construction and Building Materials. Vol. 352, article number 128965. https://doi.org/10.1016/j.conbuildmat.2022.128965
  4. Tarque N and Pancca E. 2022. Building constructions characteristics and mechanical properties of confined masonry walls in San Miguel (Puno-Peru). Journal of Building Engineering. Vol 45, article number 103540. https://doi.org/10.1016/j.jobe.2021.103540
  5. Tarque N, Blondet M, Vargas J and Yallico R. 2022. Rope mesh as a seismic reinforcement for two-storey adobe buildings. Bulletin of Earthquake Engineering. Vol. 20, 3863–3888. https://doi.org/10.1007/s10518-022-01346-7
  6. Santa-Cruz S, Daudon D, Tarque N, Zanelli C and Alcántara J. 2021. Out-of-plane analysis of dry-stone walls using a pseudo-static experimental and numerical approach in scaled-down specimens. Engineering Structures. Vol. 245, Article number 112875. https://doi.org/10.1016/j.engstruct.2021.112875
  7. Cárdenas-haro X, Tarque N, Todisco L and León J. 2021. Loss Estimation for Typical Adobe Façades of Cuenca (Ecuador) Due to Earthquake Scenarios. International Journal of Arquitectural Heritage, in press. https://doi.org/10.1080/15583058.2021.1977417
  8. Brando G, Cocco G, Mazzanti C, Peruch M, Spacone E, Alfaro C, Sovero K and Tarque N. 2021. Structural survey and empirical seismic vulnerability assessment of dwellings in the historical center of Cusco, Peru. International Journal of Architectural Heritage. 15(10), pp. 1395–1423. https://doi.org/10.1080/15583058.2019.1685022
  9. Salsavilca J, Tarque N, Yacila J and Camata G. 2020. Numerical analysis of bonding between masonry and steel reinforced grout using a plastic–damage model for lime–based mortar. Construction and Building Materials, Volume 262, 30 November 2020, Article number 120373. https://doi.org/10.1016/j.conbuildmat.2020.120373
  10. Rossi E, Grande F, Tarque N, Fagella M, Scaletti A and Gigliotti R. 2020. Seismic assessment of the Lima Cathedral bell towers via kinematic and nonlinear static pushover analyses. International Journal of Architectural Heritage. Vol (6), 811-828. https://doi.org/10.1080/15583058.2019.1570387
  11. Sumerente G, Lovon H, Tarque N and Chácara C. 2020. Assessment of combined in-plane and out-of-plane fragility functions for adobe masonry buildings in the Peruvian Andes. Frontiers in Built Environment, 2020, 6, 52. https://doi.org/10.3389/fbuil.2020.00052
  12. Salsavilca J, Yacila J, Tarque N and Camata G. 2020. Experimental and analytical bond behaviour of masonry strengthened with steel reinforced grout (SRG). Construction and Building Materials, Volume 238, 30 March 2020, Article number 117635. https://doi.org/10.1016/j.conbuildmat.2019.117635
  13. Yacila J, Camata G, Salsavilca J and Tarque N. 2019. Pushover analysis of confined masonry walls using a 3D macro-modelling approach. Engineering Structures. Volume 201, 15 December 2019, Article number 109731.
    14. https://doi.org/10.1016/j.engstruct.2019.109731
  14. Yacila J, Salsavilca J, Tarque N and Camata G. 2019. Experimental assessment of confined masonry walls retrofitted with SRG under lateral cyclic loads. Engineering Structures. Volume 199, 15 November 2019, Article number 109555. https://doi.org/10.1016/j.engstruct.2019.109555
  15. Tarque N, Salsavilca J, Yacila Y and Camata G. 2019. Multi-criteria analysis of five reinforcement options for Peruvian confined masonry walls. Earthquakes and Structures. Volume 17(2), 205-219. https://doi.org/10.12989/eas.2019.17.2.205
  16. Liguori N, Tarque N, Bambarén C, Spacone E, Viveen W and Filippo G. 2019. Hospital treatment capacity in case of seismic scenario in Lima, Peru. International Journal of Disaster Risk Reduction. Volume 38, August 2019, Article number 101196. https://doi.org/10.1016/j.ijdrr.2019.101196
  17. Liguori N, Tarque N, Bambarén C, Santa Cruz S and Palomino J. 2018. Basic seismic response capability of Hospitals in Lima, Peru. Journal of Disaster Medicine and Public Health Preparedness. Volume 13(2), 138-143. https://doi.org/10.1017/dmp.2018.47
  18. Anelli, A, Santa Cruz S, Vona M, Tarque N and Latterza M. 2019. A proactive and resilient seismic risk mitigation strategy for existing school buildings. Journal of Structure and Infrastructure Engineering, Volume 15(2). https://doi.org/10.1080/15732479.2018.1527373
  19. Lovon H, Tarque N, Silva V and Yepez-Estrada C. 2018. Development of Fragility Curves for Confined Masonry Buildings in Lima, Peru. Earthquake Spectra. Volume 34(3), 1339-1361. https://doi.org/10.1193/090517EQS174M
  20. Tarque N, Benedetti A, Camata G and Spacone E. 2017. Alternative approach for reproducing the in-plane behaviour of rubble stone walls. Earthquakes and Structures, 13 (1), pp. 29-38. https://doi.org/10.12989/eas.2017.13.1.029
  21. Villar-Vega M, Silva V, Crowley H.; Yepes, C.; Tarque N, Acevedo A, Hube M, Coronel G. and Santa María H. 2017. Development of a Fragility Model for the Residential Building Stock in South America. Earthquake Spectra , 33 (2), pp. 581-605. http://earthquakespectra.org/doi/10.1193/010716EQS005M
  22. Yepes-Estrada C, Silva V, Valcárcel J, Acevedo A, Tarque N, Hube M, Coronel G. and Santa María H. 2017. Modelling the Residential Building Inventory in South America for Seismic Risk Assessment. Earthquake Spectra, 33 (1), pp. 299-322. http://earthquakespectra.org/doi/abs/10.1193/101915EQS155DP?=
  23. Tarque N, Candido L, Camata G and Spacone E. 2015. Masonry infilled frame structures: state-of-the-art review of numerical modelling. Earthquakes and Structures. Volume 8, No. 3, pages 225-251: http://dx.doi.org/10.12989/eas.2015.8.1.225
  24. Tarque N, Camata G, Spacone E, Varum H and Blondet M. 2014. Non-linear dynamic analysis of a full-scale unreinforced adobe model. Earthquake Spectra Journal. Volume 30, No. 4, pages 759–794: http://dx.doi.org/10.1193/022512EQS053M
  25. Tarque N, Camata G, Spacone E, Varum H and Blondet M. 2014. Numerical simulation of an adobe wall under in-plane loading. Earthquakes and Structures, Volume 6, Issue 6, pages 627-646. DOI: http://dx.doi.org/10.12989/eas.2014.6.6.627.
  26. Tarque N, Lai C, Bozzoni F, Miccadei E, Piacentini T, Spacone E and Camata G. 2013. Expected ground motion at historical site of Poggio Picenze, Central Italy, with reference to current Italian Building Code. Journal of Engineering Geology, Volume 166, Issue 8, pages 100-115. http://dx.doi.org/10.1016/j.enggeo.2013.09.003
  27. Tarque N, Crowley H, Varum H, and Pinho R. 2012. Displacement-Based Fragility Curves for Seismic Assessment of Adobe Buildings in Cusco, Peru. Earthquake Spectra Journal, Volume 28, No. 2, pages 759–794. http://dx.doi.org/10.1193/1.4000001
  28. Blondet M, Vargas J, Tarque N, Iwaki C. 2011. Construcción Sismorresistente en tierra: la gran experiencia contemporánea de la Pontificia Universidad Católica del Perú (in Spanish). Journal of Informes de la Construcción, Vol. 63, 523, pp 41-50. doi: https://doi.org/10.3989/ic.10.017